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 I. Introduction

 In recent years there has emerged a considerable volume of literature which analyzes
 the possibility of a certain performance index staying above a minimum level over
 time for an agent who operates in a given stochastic dynamic environment. Thus,
 one may be interested in the potential ability of an agent to meet a minimum positive
 "subsistence" consumption level over time or of firms being able to pay out a
 minimum level of dividend to shareholders or to meet a minimal level of debt service

 in order to avoid bankruptcy. For a renewable resource which is exploited over
 time at a rate determined by the market or by the optimal policy of its owner, one
 can examine the circumstances under which the resource does not become extinct
 over time.

 The literature on exhaustible resources has focused on the difficulties of
 maintaining a positive steady level of consumption in an economy which relies on
 an exhaustible resource as an essential input in production [see Solow (1974), Cass
 and Mitra (1991)]. In a model of renewable resource with stochastic and concave
 production function, where the resource is depleted every time period according to
 market equilibrium, Mirman and Spulber (1984) derived results on chances of
 survival for the resource.

 Majumdar and Radner (1991,1992) consider a dynamic model ?f consumption
 and investment with production uncertainty, where the agent is required to meet a
 certain strictly positive consumption level every time period in order to survive.
 They consider cases where the production function is of the canonical neoclassical
 type and also the case where it is linear. This framework is close to the classical
 gambler's ruin problem in probability theory (see Feller (1957), Billingsley (1979)).
 In a similar framework, Ray (1984) analyzed the survival problem of economic
 agents who had the option of borrowing and lending over time.

 * Research on this project was partially supported by a National Science Foundation Grant. We are
 grateful to Mukul Majumdar and Venkatesh Bala for helpful comments on an earlier version. The present
 version has benefitted considerably from the specific suggestions of two referees and a co-editor of this
 journal.
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 398  T. Mitra and S. Roy

 There is also an expanding literature, both theoretical and experimental, on
 decision making under bounded rationality where agents attempt to maximize their
 chances of attaining some "aspiration level" or some minimum level of some
 performance index through their actions [see Simon (1955), Radner (1975), Gordon
 (1985), Karni and Schmeidler (1986), Majumdar and Radner (1991); also see the
 surveys by March (1988) and Selten (1990)].

 This paper is not specifically concerned with the optimization problem of agents.
 Our framework is the same as that of Majumdar and Radner (1991,1992). The agent
 is required to meet a minimum subsistence consumption level over time. Given a
 specific technology which transforms investment into output or returns over time
 and a sequence of random shocks which affect these returns, we are interested in
 the maximum potential probability that the agent is able to meet an exogenously
 specified subsistence consumption requirement every time period. Our purpose is to
 characterize the qualitative properties of this "survival" probability as a function
 of the initial endowment of the agent and other parameters of the model. We note
 that Majumdar and Radner (1991) obtain an explicit formula for the survival
 probability function in a continuous-time model. However, in discrete-time models
 results on the nature of the survival probability function are rather limited.

 In order to analyze the potential possibility of attaining a subsistence con
 sumption level every time period we focus on the stochastic process of input into
 production over time, assuming that the agent fixes his consumption in every time
 period at the subsistence level c>0. The agent is endowed with an initial stock
 x > 0 in period zero. In period 1, the agent receives output h(x, 0X) where 9X is the
 random production shock in period 1 and h is the (stationary) return function. The
 agent is ruined in period 1 if the output received is not greater than c. Otherwise,
 he consumes c and uses Xx = h(x, 9^ ? cas input into production of next period's
 output h(Xl992) and the process is repeated. The agent is ruined in the first period

 7 for which the available output h(XT_ 199T)< c; that is, XT < 0. We define survival
 as the event that Xt > 0 for all ? > 1. We take {9t}^L x to be a sequence of independent
 and identically distributed random variables whose support is a closed interval in
 the positive real line and whose common distribution has a smooth density.

 In Sections II-IV we characterize the probability of survival and develop a
 functional equation for it, under a set of fairly general assumptions on the stationary
 return function h. In particular, these assumptions allow as special cases the
 "bounded growth" and the "linear" technology of Majumdar and Radner (1991,
 1992) as well as the "productive" technology considered by Gale and Sutherland
 (1968). In Section II, we establish the existence of two critical points a and /?, for
 any given level of c, such that ruin is inevitable if the initial stock x is no greater
 than a and survival occurs almost surely if x is no less than ?. Let V(x) denote the
 probability of survival from initial stock x, given c. The focus of attention is the
 behavior of the (survival probability) function V on the interval [a, j8]. We show
 that V is strictly increasing on [a, ?].

 In Section III, we establish a functional equation for the survival probability
 function, V. Like the optimality equation of dynamic programming, this functional
 equation is based on a recursive logic. However, it is not the outcome of any
 optimization exercise. In Section IV we establish a set of smoothness properties of
 the survival probability function, V, using the functional equation. In particular we
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 Survival under production uncertainty  399

 prove the twice continuous differentiability of V on [a,/?]. This allows us to
 investigate the behavior of the derivatives of V of various orders, and convert the
 functional equation, which is really an integral equation, to differential equations
 of various orders.

 The twice continuous differentiability of V on [a, /?] and the fact that the slopes
 are zero at the endpoints implies that the second derivative of V cannot have the
 same sign on the entire interval. However, V can be shown to be concave at the
 upper end of the interval [a, /?]. Thus, if (the graph of) V has any "regular" shape,
 it must be S-shaped on [a, j?]. In Section V, we establish the S-shape of the survival
 probability function in some specific cases assuming that the 0/s are uniformly
 distributed. In Section Va, we consider the case where h(x, 0) is of the form 0x. In
 Section V, we consider the case where /i(x, 0)) is of the form 0f(x) and / is strictly
 concave on [a, /?].

 In Section VI, we try to bring out the implications of the S-shape of the survival
 probability function by considering an example of aid allocation. An amount b > 0
 is to be distributed as aid to n agents with initial wealth distributed over the [a, /?]
 interval. The objective function is to maximize the sum of increments in probability
 of survival of the n-agents as a result of aid. It is shown that an effective aid policy
 is not necessarily egalitarian. The optimal rule for low levels of b is not to give "the
 greatest aid to the poorest" but rather to give priority to agents with high levels of
 V typically located in the "middle" region.

 In Section VII, we consider the effects of a change in the distribution of the
 random shocks. The probability of survival is shown to be nondecreasing in first
 order improvements in the distribution of the shocks. In a simple example, we show
 that for a certain "low" range of initial wealth, a more variable distribution of shocks

 in the sense of mean-preserving spread, ensures a higher probability of survival; the
 opposite holds for a certain "high" range. This is in line with results on "risk loving"
 behavior by agents at low levels of wealth in portfolio choice with survival as
 objective as noted in Majumdar and Radner (1991).

 II. Preliminaries

 The model we consider is characterized by an initial stock x>0, a constant
 "subsistence" consumption c>0, a sequence of random variables {0f}?x and a
 stationary return (production) function h(y, 0) where y is the input level and 0 is a
 realization of the random variable 0t.

 We make the following assumptions on {0,},* x :

 (Al) The 0/5 are independent and identically distributedrandom variablesdefined on
 some probability space (fl, F, p\ with support [0,0] where 0 < 0 < 0 < oo.

 (A2) The distribution of the 0f's has a density g(0) which is continuously differentiable
 on [0,0].

 The return function h( , ) is a mapping from (9t+) x [ 0,0 ] into (91 + ). We make
 the following assumptions on h:

 (A3) For any x>0, 6l9 02e[0,0], 0i<02 implies h(x,01)<h(x,02). For any
 0e[0,0], 0 < xt < x2 implies h(x1,0) < /i(x2,0).
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 (A4) Forany9e[9,9lh(0L9) = 0.
 (A5) For any given 0e [0,0], h(m,9) is continuous on 9?+ and thrice continuously

 differentiable on 91++. For any y > 0, h(y, ) is thrice continuously differentiable
 on [9,91

 The next assumption is made in order to ensure that the maximum sustainable
 consumption from the technology h(%9 9) is not less than the "subsistence" constant
 level of consumption c, whatever be 9.

 (A6) For any 06[0,0], there exists x(0)>O such that [/i(x(0), 0) - c] = x(0) and
 [ft(x,0)-c] <xfor all0<x<x(0).

 Assumption (A6) implies that for each 0, the function [/*( > 0) ? c] intersects the
 45? line for the first time at x(0). It is easy to see that 0! < 02 implies x(0 ) > x(02).

 Denoting x(0) by a and x(0) by /?, we observe that (A6), along with (A3), ensures
 that for any 0e(0,0], the function [&( , 0) - c] after intersecting the 45? line at x(0)
 stays above the 45? line till x(0) = ?.

 It is worth noting that the assumptions (A3)-(A6) allow for a wide class of
 production functions provided the maximum sustainable consumption for such
 technologies are no less than c. In particular, note that no restrictions on the

 magnitude of the slopes or curvature of the production function is imposed.

 Before we go to the analysis of the model, jet us extend the domain of /i(?, 0) to
 the entire real line by defining for any 0e[0,0], h{x, 0) = 0 for all x < 0.

 Consider an economic agent who consumes a constant amount c> 0 every period
 and is ruined if the output available for consumption falls below that level. The agent
 starts off with a stock x in period zero. This stock is transformed into output in
 period 1 through the production function h(x,9x) where 0X is the random shock
 introducing uncertainty in the production process of period 1. If fc(x, 0J is no greater
 than c, then the agent is ruined in period 1. If h(x, 0J is larger than c, then the agent
 consumes c and carries over Xl = [fc(x, 9X ) ? c] as input into the production process
 of period 2. The output in period 2 is h(Xl992) where 02 is, again, a random shock.
 The agent is ruined in period 2 if h(Xl, 92) is no greater than c. If h(Xi, 02) > c then
 the agent consumes c and carries over X2 = [h(X1,92) ? c] as input into the
 production process of period 3 and so on. In general, the agent is ruined in the first
 (random) period Tfor which h(XT_l99T)< c\ that is, XT < 0. The agent is said to
 survive (forever) if Xt > 0 for all t > 1.

 More formally, let A\(x) be the stock at the end of time period i, given that the
 initial stock is x and given a fixed consumption level c. The process {Xt(x)} can be

 written as:

 X0(x) = x,Xt(x) = h(Xt_1(x),9t)-c, forf>l (1)

 Let V(x) denote the probability of survival from initial stock x, for a fixed
 consumption level c. That is,

 V(x) = Probability [X,(x) > 0, t > 1] (2)

 We refer to V: 9? - [0,1] as the survival probability function. It is obvious that
 K(x) = 0forx<0.
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 We now proceed to state two results (with some heuristic arguments) which are
 basically extensions of the results derived in Majumdar and Radner (1992) and
 Mirman and Spulber (1984) for the "bounded growth" case to the general model
 considered here. [For rigorous proofs see Mitra and Roy (1990a).]

 Proposition 1:
 The survival probability function, V, satisfies the following properties: (i) V(x) = Ofor
 x<a; (ii)0< V(x)< lfor a<x<?;(iii) V(x) =lforx>?.

 The result is intuitively clear from Figure L If the initial stock is below a, then
 even if the best possible outcome of 0t (that is, 0) is realized period after period, the
 agent's stock can only decrease over time and in fact falls below zero in a finite
 number of time periods. Thus ruin occurs almost surely. On the other hand if the
 initial stock is above /?, then even under the worst possible realizations of 0t (that
 is, 0), period after period, the agent's stock can never fall below ?. Hence the agent
 survives almost surely.

 Now, suppose the initial stock (zx) lies between a and ?. Consider the range of
 0's for which x(0) lies between a and zx; that is [fe(#,0) ? c] intersects the 45? line
 at a point below S. Now, if the 0/s successively lie in this range then in a finite
 number of time periods, the agent's stock is driven up to a level above ? from which
 survival is ensured. Thus the probability of survival from x, is at least as much as
 the measure of the set of coei2 for which 0t's lie in the specified range for the
 appropriate finite number of time periods and this measure is positive; that is,
 V(zi)> 0. Similarly, if the 0,'s lie in the range of 0's for which x(0) lies between zx
 and 0, then the agent is ruined in a finite number of time periods. Since the
 probability of this event is positive, the probability of ruin from zx is positive.
 Consequently, the probability of survival from zx is less than 1; that is, K(zt) < 1.

 h(x,e)

 Figure 1.
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 402  T. Mitra and S. Roy

 Proposition 2:
 The survival probability function, V, is strictly increasing on [a, /}].

 That V(x) is non-decreasing is obvious. To see why V(x) is strictly increasing
 consider zx < z2 as in Figure 1. If the 0,'s lie successively in the range of 0's for which
 x(0)e(zl,z2) that is, [/i(?,0)-c] intersects the 45? line at points lying between S
 and T, then there exists a finite number of time periods t in which the stock from
 the process beginning at zx decreases to a level below a from where ruin is inevitable
 and that from z2 increases to a level above ? from where survival is ensured. Hence
 the probability of survival from zx and z2 differ by at least as much as the measure
 of the set of coefl for which 0f's lie in the prescribed range for t periods and that
 measure is positive. Thus, V(z{)< V(z2).

 III. The functional equation of the probability of survival

 Consider the probability of survival from a given initial stock x > 0. Starting from
 x the stock at the end of next period is [fi(x, 0X) - c]. Now, suppose the distribution
 of the 0/s collapsed on two points - say 0 and 0 with probability p and (1 ? p)
 respectively. Then the event that the agent survives (forever) from x > 0 is equal
 to the event that survival occurs from at least one of the two possible levels of stock
 for the next time period; that is, from [h{x, 0) ? c] and [h(x, 0) ? c]. Therefore, in
 such a case, one should have:

 V(x) = pV(h{x, 0) - c) + (1 - p)V(h{x, 0) - c)

 If we extend this heuristic argument to the case where the 0f's have a density g(0) on
 [0,0 ], as has been assumed in section II, then we expect that the following relation
 should hold:

 V(x) = ElV(h(x,0)-c)]

 This is the functional equation of the probability of survival. It can be derived as a
 standard property of Markov processes; for an elementary self-contained proof see

 Mitra and Roy (1990a). For ease of reference, we state this result formally in the
 following theorem:

 Theorem 1:
 For every x > 0, the survival probability function, V, satisfies the following equation:

 V(x) = ?V(h(x,0)-c)g(0)dO. (3) o

 Remark:
 Note that since V is increasing, it is almost everywhere continuous. Thus the integral
 on the right hand side of the functional equation (3) can be treated as a Riemann
 Integral (see Rudin (1976) pp. 323).

 It is very difficult, in general, to obtain a closed form solution to the functional
 equation (3). In fact, this is one of the well known problems faced by probabilists
 working on the gambler's ruin or random walk theory. The best one can hope for,
 under the circumstances, is to characterize the qualitative properties of the function
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 V(x) by using the functional equation. In sections (IV)-(VI) we work out some of
 the interesting properties of V(x) under various structural assumptions.

 IV. Smoothness properties of the survival probability function

 In this section we develop certain continuity and differentiability properties of the
 survival probability function. While such "smoothness" properties of the function
 are of independent interest as qualitative characterizations, they also enable us to
 investigate the shape of the function by looking at derivatives and differential
 equations of various orders.

 To begin, note that we have already specified the function V explicitly
 everywhere on 9? except the interval [a, /J] (see Proposition 1). We also know that
 V(x) is strictly increasing on [a, /?]. Denote by H(x, s) the "partial inverse" of /i(x, 0);
 that is, if(x, s) = {0:ft(x, 0) = 5} for se[/i(x, 0), h(x, 0 )]. Then, the functional equation
 (3) can be written, after a change of variables, as

 h(xj)-c
 V(x) = J V(t)g(H(x91 + c))D2h(x, H(x, t + c))dt (4)

 h(x,0)-c

 where D2h is the partial derivative of h with respect to the second argument.
 Define A = /i(a,0)-c and B = h(?,9)-c. Then, A <h(x,9)-c<fc(x,0)-c <B

 for allxe[a,/?].
 Choose any xe(a,/?) and any sequence {x?} converging to x. Then, there exists

 N, such that for n> iV, x?e[a,/?]; that is, A <h(xn,9)-c<h(xn99)-c<B. Note
 that xn-*x implies, H(xn,t + c)->H(x,i + c) pointwise. Also, g, D2h and h are
 continuous functions. Hence, writing out the functional equation of the form (4)
 for V(xn) and taking limits using the dominated convergence theorem, we have
 V(xn) -> V(x). This proves continuity of V on (a, /?).

 It is easy to show that V is also continuous at a and ?. For example, at a the
 left hand limit is equal to zero which is equal to F(a). Consider any sequence xnl<x.
 Then, by following a method similar to that in the previous paragraph, we have
 V(xn) I V(ol) so that the right hand limit is equal to V(ol).

 Let D be the rectangle in 9?2 defined by D = [A, B] x [0,0]. Define

 F(i, x) = V(t)g(H(x, t + c))D2h(x, H(x, t + c)) (5)

 Then F and D2F are continuous on D. Furthermore, [/i(x, 0) - c] and [fc(x, 0) - c]
 lie in [A, B~\ and are differentiable on [a, /?]. Thus by an appeal to the "Leibniz
 Formula" (see Bartle (1976), p. 245) we have from (4) that V is differentiable on
 [a, /?]. In fact, essentially repeating this argument, one can show that V is twice
 continuously differentiable on [a, /?] and K'(a) = V\?) = 0. [For a complete proof
 see Mitra and Roy (1990a)]. The above results can be formally summarized in the
 following theorem:

 Theorem 2:
 The survival probability function V, is twice continuously differentiable on [a, /?] and

 K'(a)=K'(j?) = 0. (6)
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 V. The survival probability function is 5-shaped

 In this section, we develop some results on the "convexity-concavity" properties of
 V(x) in the range [a, /?]. In particular, we prove that V(x) is S-shaped for two classes
 of technologies, a linear and a "canonical" nonlinear case. We assume for this
 purpose (in addition to(A.l) and (A.2)) that #(0) has a very simple form: it is the
 uniform density on [0,0].

 V.a: The case of a linear technology with uniformly distributed shocks

 In this subsection we consider the special case where h(xJ3) is linear, that is
 h(x,0) = x0, for 0e[0,0], x>0 and h(x,0) = O for 0e[0,0] and x<0. Thus,
 (A.3)-(A.5) are satisfied. Assumption (A.6) is ensured by assuming that the linear
 technology is productive (0 > 1).

 For this linear case, we can actually calculate what the points a and ? are from
 the relations: 0a ? c = a and 0? ? c = ? which give a = c/(0 ? 1) and ? = c/(0 ? 1).
 Recall that Proposition 1 of section II says that V(x) = 0 for x < a, V(x) = 1 for x > ?
 and K(x)e(0,1) for xe(a,?). We also have V(x) strictly increasing on [a, /?] by
 Proposition 2. Further, the functional equation of V{x), given by (3), takes the
 particular form:  1 ?

 V(x) = =-f V(0x - c)d0 (7) 0-0e

 which, after a change of variables, can be written as:
 1 0x-c

 xV(x) = -^- J V(t)dt (8) 0 ? vOx-c

 By following the methodology used in section IV, one can show from (8) that V is,
 in fact, thrice differentiable on [a, /?].

 Define the points Zx and Z2 in (a, ?) as follows:

 Z1 = [c0/0(0-l)] and Z2 = [c0/0(0 - 1)] (9)

 Then Zx < Z2 if and only if
 00>0 + 0 (10)

 This condition, as we shall see, is crucial to the characterization of the shape of V
 on the entire interval [a, /?]. We begin by stating the following lemma:

 Lemma 1: The survival probability function, V, satisfies V'(x) > 0 and V"(x) < Ofor x
 inlZu?).
 Proof: For xe[Zx, ?), 0x - c > ?. Equation (8) then yields

 I r ? ?x-c n
 xV(x) = =?\ J K(?)d?+ J V(t)dt\ 0-0|_?x-c ? J

 But V(t) = 1 for t > ?. Hence,

 xV(x) = J?\ ] F(i)dt + (0x-c-j?)| (H) 0 ? 0\_ix-c J
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 Differentiating (11), we have

 xV\x) + V(x) = - V(9x - c)[0/(0 - 0)] + [0/(0 - 0)] (12)

 For x in (a, ?\ (0x - c) < x and K(0x - c) < V(x) by Proposition 2. Thus, (12) yields

 xV\x)> - V{x){\ + [0/(0-0)]} + [0/(0-0)] = [1 - V(x)-][?l{9- 0)] >0

 by using Proposition 1. This establishes F(x)>0 for x in [Zu?). Differentiating
 (12) we have

 xV"(x) = - [02/(0 - 0)] V\9x -c)- 2V'(x)

 Since x lies in [Zlf0], V'(x)>0; also, V'(9x-c)>0. Hence F"(x)<0 for
 *e[Zi,/?). //

 We now proceed to show that in the range (a, Zx\ there exists a unique x* such
 that F'(x*) = 0 and K?>0 on (a,x*), F"(?)<0 on (x*,?). In order to do this,
 we assume (10), a condition which, we believe, is not too restrictive; for example, it
 is always satisfied if the technology is "sufficiently productive" (specifically, if 0 > 2).

 Theorem 3:
 If 99 > 9 + 0, then V(x) is S-shaped on [a, /?]. That is, there exists a unique x*, where
 ol<x*<Zu such that V"(x*) = 0, V(m)>0on (a,x*), V'\%)<0on (x*,?).

 Proof: We know that V is twice continuously differentiable on [a,/?], and
 V'(ol) = 0 = V\?). Hence, by Rolle's theorem (see Bartle (1976), p. 196) there exists
 some ye(a, ?) such that V"{y) = 0.

 Define x* = sup{xe(a, ?): V"(x) = 0}. Since V" <0 on [Z^j?), it follows that
 x*e(a,ZJ. Also, V"(x*) = 0 and V"<0 on (x*,j?) by continuity of V". All that
 remains to be shown is that V" > 0 on (a, x*).

 Define the sequence of points (xf)t?i0 by the recursion:

 x0 = x*, 0xf +1 ? c = xt for t > 0

 The following properties of {xf}f?i0 are worth noting: (i) xf>a for t>0; (ii)
 xt+j < xt for ? > 0; (iii) the sequence {x,},? 0 converges to a. To see (i), note first that
 x0 = x* > a. Further if x, > a for some t > 0, then 0xf+x ? c = x, > a = 0a ? c, which
 yields xi+1>a. Thus (i) follows by induction. Using (i), we get for i>0,
 x, = 0xi+1 -c>xi+1, which establishes (ii). Using (i) and (ii), we know that x,
 converges to some J? > a. Then since 0xt+ x ? c = xt, we get 0* ? c = *, which implies
 x = a. This establishes (iii).

 Next, observe that the functional equation (8) takes the form
 i 9x-c

 xV(x) = ^~ f V(t)dt (13) 0 ? 0 a

 for x in (a, Zx). This is because xe(a, Zx) implies x<Zl<Z2 which in turn implies
 0x - c < a. Note that F(i) = 0 for t < a. Differentiating (13), we obtain

 xK'(x) + V(x) = [0/(0 - 0)] K(0x - c)

 Differentiating this equation, we obtain the fundamental differential equation for
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 xG(a,Zj):

 xV"{x) + 2V'(x) = [02/(0 - 0)] V'(5x - c) (14)

 The proof from this point is divided into four main steps.

 Step 1: There exists 6 > 0 such that V"(%) >0on [x* - ?,x*).

 Differentiating (14) (we know V is thrice differentiable for the case considered
 in this section), we obtain

 xK'"(x) + 3K"(x) = [03/(0 - 0)~]V\0x - c) (15)

 Evaluating (15) at x = x* and noting that V"(x*) = 0, we get

 x*V"\x*) = [03/(0 - 0)] K"(0x* - c) (16)

 But (0x* - c) lies in (x*, ?) where V" < 0. Hence K'"(x*) < 0. Therefore, there exists
 e > 0 such that V" > 0 on [x* - s, x*).

 Step 2. V">0onlxux*).
 If xx > x* ? s, then we are done. So consider the case where xx < x* ? e and

 suppose contrary to our claim that there exists ye\_xl, x* ? e) such that V"(y) = 0.
 Let j> = sup{ye[xx,x* - e): V"(y) = 0}. It follows that V"(p) = 0 and j>e[*i ? ** - 4
 and V" > 0 on (p, x*). Evaluating (14) at $ and x* we have:

 2V'(y) = l?2/(?-0)WW-c) (17)

 2V'{x*) = [02/(0 - 0)] V'{0x* - c) (18)

 Since V" > 0 on (j>,x*), V\jf) < V\x*). Then, (17), (18) yield

 V'(?$-c)<V'(?x*-c) (19)
 Now, $e[xx,x* ? s) implies (?p ? c) lies in (x*, jS) and so does (0x* ? c). We know
 thatF" < 0 on (x*, ?). Since y < x*, we have 0p - c < 0x* - c and hence F(0^ - c) >
 V'(0x* - c), which contradicts (19).

 Step 3. V"(m)>0on\_x2,xl).

 Suppose on the contrary, there exists ze[x2,xx) such that V"(z) = 0. Let
 z = sup{z [x2,x1): V"(z) = 0}. Hence, V"(z) = 0 and F'>0 on (z,xx). Since
 K"(xx) > 0, z < xx. Evaluating (14) at x = z, and using V"(z) = 0 we must have:

 2V'(?) = [02/(0 - 0)] V(0? - c) (20)

 But 00>_0 + 0>20 implies 0>2. Hence [02/(0-0)] >2. Further, ze^x^xO
 implies (0z - c) [xj, x*). Hence K;/ > 0 on (f, 0f - c) so that V'(Z) < V'(0E - c). In
 other words, [02/(0-0)]V'(0z-c)>2V'(?), contradicting(20).

 Step 4. If V" >0on [xt, xt_r), then V" > 0 on [xi + x,xt), t > 1.

 The proof is identical to Step 3 and hence omitted. Thus by induction, V" > 0
 on [xf, xf_j) for all t > 1. Since x,->a as i-> oo, we have V" > 0 on (a, x*). //
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 V.b. The case of a nonlinear technology with uniformly distributed
 multiplicative shocks

 In this subsection we maintain (A. 1) and (A.2) and assume that h(x, 0) = 0/(x), where
 / is an increasing, strictly concave function (on the relevant range of input stocks)

 and the random shocks enter multiplicatively. As before^ we continue to assume
 that #(0) is the uniform density on [0,0] where O<0<0<oo. In order to avoid
 any ambiguity, we state below the entire set of conditions that will be imposed on
 the function, /.

 (C.l) / is continuous on 9?+ and thrice differentiable on 9? + +.

 (C.2)f(x) = 0forx<01
 (C.3) For any 0e[0,0], there exists x(0)>O such that 0/(x(0)) - c = x(0) and

 9f{x)-c<xfor allxe(0,x(0)).
 (C.4) / is strictly increasing on [a, /?], (with f > 0 on [a, j?]), where a = x(0) and

 ? = x(9).
 (C.5) / is strictly concave on [a, /?] (with f" <0on [a, /?]).

 As in section V.a, define the points Zx and Z2 in (a, ?) by 9f(Z1) ? c ? ? and
 0/(Z2)-c = a.

 First of all note that the functional equation (3) takes the following form for the
 technology considered in this section:

 1 ?
 V(x) = =-\V(9f(x)-c)d9 0-0?

 which after change of variables can be written as:
 i ?f(x)-c

 f(x)V(x) = -=?- J V(t)dt
 V ? V0f(x)-c

 By following the method outlined in section IV and using (C.l), one can show that
 V is thrice differentiable on (a, ?).

 As in Theorem 3, in order to establish that V is S-shaped, we need to ensure
 that ZX<Z2. We assume this directly:

 (C.6) ZX<Z2.

 Lastly, we need to make a technical assumption which appears crucial to our
 method of proof. Define <?:9? + + ->5R by

 ml (f(x))2 J
 It is obvious that, under (C.1)-(C5), q(x) > 0 on [a, /?] We assume,

 (C.7) 4'(*)>Oon[a,0].
 Assumption (C.7) is satisfied for the well-known parametric example, f(x) = xM,

 where 0<//< 1.
 By employing methods essentially analogous to those used in proving Theorem 3,

 we can establish the following result. [For a complete proof, the interested reader
 is referred to Mitra and Roy (1990a)].
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 Theorem 4:

 The survival probability function, V, is s-shaped on [a, /?]. That is, there exists a unique
 x*g(oc,Zx) such that V"(x*) = 0, V >0on (a,x*) and V" <0on (x*,?).

 VI. Implications of the S-shape of the survival probability function:
 an example of aid allocation

 Suppose there are n economic agents each characterized by a certain level of initial
 wealth xh i = 1,2,..., n. We assume that each agent faces the kind of production
 uncertainty and survival problem as outlined in the earlier sections. In particular,
 we assume that the survival probability function V(x) faced by each economic agent
 is identical. Further xfe(a, ?), i = 1,2,..., n where a and ? are defined as in Section II.
 Let V(x) be strictly increasing, twice continuously differentiable and "S-shaped" on
 [a, /?] in the sense that there exists x*g(oc, ?) such that V" > 0 on (a, x*) and V" < 0
 on(x*,0).

 A total budget b > 0 is available for allocation among the n agents so as to
 enhance their probability of survival. Each agent receives as aid ax > 0. The problem
 is to allocate the budget among the n agents so as to maximize the sum of increments
 in their probability of survival. Formally:

 n

 Maximize ? [K(x, + a?) - F(xf)] ?=i

 Subject to tai^b I (M)
 a?> 0, i = 1,..., n.

 While existence of an optimal aid vector (that is a vector a* = (a\*,...,a*) which
 solves problem (M)) is immediate, it is difficult to ensure uniqueness of the optimal
 aid vector for all b>0. Nevertheless, certain interesting possibilities can be
 indicated.

 To begin with, note that the first-order necessary conditions for maximization

 imply that if for some b > 0 an aid vector a* is optimal and satisfies af >0,af> 0,
 i #j, then

 V'(xi + a*)=V'(xj + a*) (21)

 And,ifaf >0,a* = 0,then

 V'ixt + a?teVixj) (21')

 The first important fact worth noting is that it is by no means necessary that
 the poorest agent receives the largest aid. In fact no such monotonicity with respect
 to initial wealth may hold because of the S-shape of V(x). For example, consider
 the case where n = 2, xt <x* <x2 (where V"(x*) = 0), V'(x2)> V'(xl). Let b j?e
 defined by S = inf{b>0: b = a1-\-a2, a?>0, a2>0; V'(x1+al)=V'(x2 + a2)}.
 Then b > 0, and given (21), (21'), for ?>e(0, b), there is a unique optimal aid vector and
 it awards the entire available budget as aid to agent 2 and none to agent 1; that is,
 aj = 0, a\ = b. Also, it can be shown that if x? < xi < x*, then the lowest level of b

This content downloaded from 216.165.95.159 on Thu, 29 Aug 2019 18:16:20 UTC
All use subject to https://about.jstor.org/terms



 Survival under production uncertainty  409

 for which positive aid is given to / (under some optimal aid vector) is greater than
 that for;. [These and other results are discussed in Mitra and Roy (1990b)].

 One cannot discuss the monotonicity of the optimal aid of a particular agent as
 a function of b, because of possible non-uniqueness of solutions. However,
 indications are that a selection from the optimal aid correspondence could be
 cyclical.

 VII. Sensitivity of the probability of survival to changes in the
 distribution of the random shocks

 Consider the probability of survival in the process (1) defined in section II, under
 two alternative sequences of random shocks {9t}^=1 and {9t}?L1. Let the stochastic
 process of inputs for a given level of subsistence consumption c from some initial
 stock y corresponding to the sequence {0,},*! be denoted by {Xt(y)} =0. More
 formally:

 X0(y) = yJt(y) = h(Xt_1(y)Jt)-c, t>\ (22)

 X0(y) = y, Uy) = h(Xt_ x(y% 9t)-c, t > 1 (23)
 We impose a very weak set of restrictions on the return function and the

 distribution of the random shocks, which can be stated as follows:

 (D.l) ft(x, 0) = Ofor x < 0; h is increasing in x and 0.

 (D.2) {9t} = x and {9t} = x are sequences of independent random variables.

 Note that we do not require all the 0,'s or all the 0,'s to be identically distributed.
 Let P(y) and P(y) denote the probability of survival in the processes (22) and

 (23) respectively. The probability of survival for t periods is denoted by P'(y) and
 P'(y)y respectively. That is, P'(y) = Probability [Xx(y) > 0 for t = 1,..., i]; P'(y) =
 Probability lXt(y) > 0 for t = 1,..., t].

 We say that a random variable X is stochastically larger than Y, denoted by
 X > st Y if P[X > ?] > P\Y> ai] for all aeW. The following result is well known
 (see Ross (1983, p. 256)) and useful for our analysis.

 Proposition 3:
 If X!,...,Xn are independent, Yu...9Yn are independent and Xi>st Y{ for all
 i = 1,..., n, then for any increasing f f(X x,..., Xn) > st /( Yx,..., Yn).

 The following result is obtained as an easy application of Proposition 3.

 Lemma 3:
 If for all t > 1, 0, > st 0? then under (D.l) and (D.2), Xt(y) > st Xt(y)Jor every y.

 Proof: We have Xx(y) = h(y,9x)-c and Xx(y) = h(y,9l)-c. Now, 9x>st9x
 implies, from Proposition 3 (for n = 1), that Xx > stA\. Suppose for some t > 1,

 Xt(y) > stXp)- Then,Jt+x(y) = h(Xt(y\9t+1) - c, and Xt+1(y) = h(Xt(y\9t+1) - c.
 Note that Xt(y) and 0i+1 are independent and so are Xt(y) and 0f+1. Thus again,
 by Proposition 3, Xt+l(y) > stXt + 1(y). Thus, by induction, Xt(y) > stXt(y) for all
 t>\. II
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 Theorem 5:
 If for all t > 1, 0, > st 0? then under (D.l) and (D.2), P(y) > P(y).

 Proof: For any t > 1, F(y) = Prob [*,(>>) > 0], and P*(y) = Prob IX ?y) > 0]. Further,
 from Lemma 3, Xt(y) > st Xt(y). Hence Prob IXt(y) > 0] > Prob [Xt(y) > 0]; that is
 P'(}>) > P'(>>). Since P'(y)iP(y) and Pf(y)iP(y) as r-?oo we have the required
 result. ?I

 One may be curious as to how the probabilities of survival between the two
 processes (22) and (23) compare if there is a difference in the variability or "riskiness"
 in the two sets of random variables - in particular, if the 0t's have distributions
 that are mean-preserving spreads of the distribution of the 0t's. Consider the
 particular case where {0t)T=i is a sequence of independent and identically
 distributed random variables with the common distribution being uniform on
 some interval [a1,b1~\ c(l,oo). Similarly, take the 0,'s to be independent and
 identically distributed with the common distribution being uniform on some
 interval [a2, fe2] a (1, oo).

 The notion that the distribution of 0t's is a mean preserving spread of that of
 the 0f's implies,

 a2<a1<b1<b2, and (al + b1) = (a2 + b2) (24)
 Let us take h(x, 0) to be linear; that is h(x, 0) = x0 for all x > 0 and h(x, 0) = 0

 for x < 0. Then from the results obtained in Section II, we know there exist points

 olx, a2, ?x and ?2 where <xx = c/(bk~ 1), ?x = c/(ax - 1), a2 = c/(b2 - 1), ?2 = c/(a2 - 1)
 such that: P(y) = 0 for y < olx, P(y) = 1 for y > ?x and 0 < P(y) < 1 for ye(oi1,?x).
 Similarly P(y) = 0 for y < a2, P(y) = 1 for y > ?2 and 0 < P(y) < 1 for y (a2,?2). We
 also know that P is strictly increasing and continuous on Cai>^i3? P is strictly

 increasing and continuous on [a2, ?2~\. Lastly, (24) implies CL2<oil<?l<?2. Define
 ?! = inf(z:P(z) = P(z), ze[a1?jSJ}, and ?2 = sup{z: P(z) = P(z), ze[a2,j32]}). Then
 ?i < ?i < ^2 < ?i and P(y) > P(y) for ye(a2, Zx) while P(y) > P(y) for ye(l;2,?2).

 Thus a higher variability of the distribution of the 0f's in the sense of mean
 preserving spread does not necessarily imply that the probability of survival will
 be higher or lower for all levels of y. In fact, as we see in the above example, for
 certain ranges of values for y, typically a "low range", the probability of survival is
 higher in a process with greater variability of random shocks. The opposite holds
 for some "high range" of y. This may, in part, explain some kind of "risk-loving"
 behavior of an agent concerned about survival at low levels of initial wealth and
 "risk-averse" behavior at some high levels of initial wealth. The possibility of this
 kind of behavior has been noted in Majumdar and Radner (1991).
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